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This paper presents several general properties of systematic absences that

are available before unit-cell parameters and the space group have been

determined. The properties are given in the form of distribution rules of Miller

indices corresponding to systematic absences on a topograph. A topograph is a

graph whose edges are associated with a set of four lattice vectors satisfying Ito’s

equation 2(|l1
*|2 + |l2

*|2) = |l1
* + l2

*|2 + |l1
*
� l2

*|2. It is possible to integrate global

information about extinct reflections by using topographs. As an example of the

application of these rules, a new powder auto-indexing algorithm is introduced,

focusing on its theoretical aspects.

1. Introduction

When �ext is the set of Miller indices that are extinct due to

systematic absences, it is impossible to extract the lengths of

lattice vectors l� belonging to �ext from powder diffraction

patterns. Because of this, some powder auto-indexing

programs have tables of systematic absences in order to

reduce their adverse effects. However, it is not straightforward

to use such tables without complicating and slowing the

algorithm before the unit-cell parameters have been deter-

mined. The aim of this study is to provide new types of

common properties of systematic absences that are available

before the unit-cell parameters are determined. Although we

focus on powder auto-indexing in this paper, our approach

would also be effective in any kind of unit-cell parameter

determination.

A topograph is a graph whose edges are associated with a

set of lattice vectors l1, l2, l1 � l2, as in Fig. 1 of x3. These

vectors satisfy Ito’s equation 2ðjl1j
2
þ jl2j

2
Þ ¼ jl1 þ l2j

2

þ jl1 � l2j
2 used in Ito’s method (Ito, 1949). In x3, we explain

the basic properties of topographs defined for two- and

three-dimensional lattices. Using topographs, we can analyse

the relationship between the two sets of lattice vectors

fl1; l2; l1 � l2g and fk1; k2; k1 � k2g.

In x4, we present a common property of the systematic

absences of wallpaper groups (Theorem 1) so as to facilitate

understanding of the case of space groups. The property is

described by the distribution rules of elements of �ext on a

topograph, which were originally defined in the reduction

theory of positive-definite quadratic forms (Conway, 1997).

From this property, Ito’s method (Ito, 1949; de Wolff, 1958)

is effective for unit-cell parameter determination of two-

dimensional lattices, regardless of the systematic absences of

wallpaper groups. However, this is not the case for space

groups. In Appendix A of the supplementary material,1 we

present types of systematic absences for which Ito’s method is

considered to fail, or at least encounter a difficult situation.

Nevertheless, systematic absences of space groups are

proved to have similar properties to those of wallpaper groups

(Theorems 2–4). By using the following equation instead of

Ito’s equation, an algorithm which is effective for all types of

systematic absences is gained:

3jl1j
2
þ jl1 þ 2l2j

2
¼ 3jl2j

2
þ j2l1 þ l2j

2: ð1Þ

In x5, we introduce the mathematical results in parallel with

an explanation of the new powder auto-indexing algorithm.

Although the new auto-indexing method also utilizes Ito’s

equation, the remaining parts are largely different from de

Wolff’s method adopted in Visser’s program (Visser, 1969).

Error-stable Bravais-lattice determination is required after-

wards in order to complete powder auto-indexing. We have

already contributed to reducing the time for error-stable

Bravais-lattice determination in Oishi-Tomiyasu (2012).

As another application of topographs, we define a new

sorting criterion for zones. This criterion is used in our powder

auto-indexing algorithm for zone detection in order to reduce

the computational time considerably.

The content of this paper focuses on the theoretical aspects

of the new algorithm. Technical issues, including parameter

settings, results and other advantages such as computational

speed and robustness against missing or false peaks, will be

explained in our subsequent paper on the new powder auto-

indexing software Conograph.

1 Appendices A, B, C and D of this paper are available from the IUCr
electronic archives (Reference: SC5063). Services for accessing them are
described at the back of the journal.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=sc5063&bbid=BB14
http://crossmark.crossref.org/dialog/?doi=10.1107/S0108767313021740&domain=pdf&date_stamp=2013-10-01


Notation and symbols. We summarize the notation and

symbols used throughout the paper. The inner product of the

Euclidean space RN is denoted by u � v and the Euclidean

norm u � u is denoted by juj2. Any basis v1; . . . ; vN of an

N-dimensional lattice L is associated with an N � N

symmetric matrix ðvi � vjÞ1�i;j�N , which is called a metric tensor

of L.

If a set fv1; . . . ; vig � L (1 � i<N) is extended to a basis

v1; . . . ; vN of L, the set is called a primitive set of L. In parti-

cular, v is called a primitive vector of L if and only if fvg is a

primitive set of L.

For a crystal, its primitive lattice is the lattice consisting of all

the translations that preserve the crystal structure. Wallpaper

groups and space groups are collectively called crystal-

lographic groups when the dimension of the lattice is not fixed.

2. Types of systematic absence

Any crystallographic group G is represented as the semidirect

RG� L, where RG is a point group of G and L is the lattice

consisting of all the translations in G. All the types of

systematic absence are determined by the following two

factors: (a) the isomorphism class of G, (b) the conjugacy class

of the site symmetry group H in G. [More precisely, the

subgroup RH � RG corresponding to H and the set of Wyckoff

positions are used to represent H in International Tables for

Crystallography (Hahn, 1983).]

There are only finitely many types of systematic absence

when the dimension of the lattice L is fixed. Furthermore, for

N ¼ 2; 3, the following fact is ascertained from the list of

systematic absences in International Tables for Crystal-

lography (although this is true for general N, the general case

is not necessary here).

Fact 1. Let M be the order of the point group RG of G and

L� be the reciprocal lattice of L. If �ext � L� is the subset

corresponding to the systematic absences of the type deter-

mined by G and H, there existH � RN , a union of finite linear

subspaces of dimension less than N and a subset � � L�=ML�

such that the following holds for any l� 2 L� not contained in

H:

l� 2 �ext() l� þML� 2 �: ð2Þ

For instance, the order of RG of the space group P4232 (No.

208) equals 24. For the space group, the type with the Wyckoff

letter i; j has

�ext ¼ f½hkl	 : h; k; l are odd and distinctg [ f½hhl	 : l is oddg

[ f½hkh	 : k is oddg [ f½hkk	 : h is oddg:

ð3Þ

If the two-dimensional planes in the reciprocal space including

all of ½hhl	, ½hkh	, ½hkk	 are denoted by H½hhl	, H½hkh	, H½hkk	,

respectively, H and � in Fact 1 can be chosen as follows:

H ¼ H½hhl	 [ H½hkh	 [ H½hkk	; ð4Þ

� ¼ f½hkl	 2 L�=24L� : h; k; l are oddg: ð5Þ

Fact 1 was used to prove the theorems in x5.

3. Topographs for low-dimensional lattices

Topographs were originally introduced in Conway (1997) as a

picturesque method to explain the Selling reduction (Selling,

1874) of 2� 2 metric tensors [the Selling reduction is also

called the Delaunay reduction in crystallography (Delaunay,

1933)]. An application of topographs to powder auto-indexing

was proposed first in Oishi-Tomiyasu et al. (2009).

In the following sections, the structures of topographs for

two-dimensional and three-dimensional lattices are explained.

We refer to Conway (1997) for a more detailed explanation of

two-dimensional cases. We shall omit the case of higher-

dimensional lattices for simplicity, although the definition of

topographs is generalized to any-dimensional lattices by using

C-type domains (Ryšhkov, 1976), retaining the association of

topograph edges with lattice vectors satisfying Ito’s equation.

The relation between C-type domains and Ito’s equation

seems not to have been mentioned in the literature.

3.1. Topographs for two-dimensional lattices

For any fixed two-dimensional lattice L, the set of all nodes

of the topograph is identified with the following V2:

V2 :¼ 0;�l1;�l2;�ðl1 þ l2Þ
� �

: hl1; l2i is a basis of L
� �

: ð6Þ

Every � 2 V2 consists of seven vectors, including 0. We

denote the node corresponding to � 2 V2 by vð�Þ. In the

topograph, two nodes vð�1Þ; vð�2Þ are connected by an edge if

and only if the number of elements in �1 \�2 equals 5. This

holds if and only if there exist 0 6¼ k1; k2 2 L such that

�1 ¼ ð�1 \�2Þ [ f�k1g and �2 ¼ ð�1 \�2Þ [ f�k2g. It is

straightforward to check that both ðk1 � k2Þ=2 are contained

in �1 \�2 in this case, and hðk1 þ k2Þ=2; ðk1 � k2Þ=2i is a basis

of L.

As a result, the edge connecting vð�1Þ and vð�2Þ may be

considered to be associated with the following Ito’s equation:

2
k1 þ k2

2

����
����

2

þ
k1 � k2

2

����
����

2
 !

¼ jk1j
2
þ jk2j

2: ð7Þ

From the lengths in equation (7), as in Ito’s method, a 2� 2

metric tensor of L is retrieved by

j
k1þk2

2 j
2 jkij

2�j
k1þk2

2 j
2�j

k1�k2
2 j

2

2

jkij
2�j

k1þk2
2 j

2�j
k1�k2

2 j
2

2 j
k1�k2

2 j
2

 !
ði ¼ 1; 2Þ: ð8Þ

It does not matter whether i ¼ 1 or 2 is used in equation (8),

because the 2� 2 metric tensors obtained are equal within a

change of basis as seen from the following equation:
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j
k1þk2

2 j
2 jk1j

2�j
k1þk2

2 j
2�j

k1�k2
2 j

2

2

jk1j
2�j

k1þk2
2 j

2�j
k1�k2

2 j
2

2 j
k1�k2

2 j
2

0
@

1
A

¼
1 0

0 �1

� �
j
k1þk2

2 j
2 jk2j

2�j
k1þk2

2 j
2�j

k1�k2
2 j

2

2

jk2j
2�j

k1þk2
2 j

2�j
k1�k2

2 j
2

2 j
k1�k2

2 j
2

0
@

1
A 1 0

0 �1

!
:

ð9Þ

In a topograph, the direction of every edge is determined as in

Fig. 1. (The edge directions are omitted in the following

discussion if unnecessary.) Every node is an endpoint of three

edges, as in Fig. 2. In general, different edges of the same

topograph provide 2� 2 metric tensors of L with regard to

difference bases. For example, this holds for the three Ito

equations in Fig. 2 as follows:

jl1j
2 jl1þl2j

2�jl1j
2�jl2

2

2

jl1þl2j
2�jl1j

2�jl2j
2

2 jl2j
2

 !

¼
1 1

0 �1

� �
jl1 þ l2j

2 jl1j
2�jl2j

2�jl1þl2j
2

2

jl1j
2�jl2j

2�jl1þl2j
2

2 jl2j
2

 !
1 0

1 �1

� �

¼
�1 0

1 1

� �
jl1j

2 jl2j
2�jl1j

2�jl1þl2j
2

2

jl2j
2�jl1j

2�jl1þl2j
2

2 jl1 þ l2j
2

 !
�1 1

0 1

� �
:

ð10Þ

Regardless of the selected L, topographs for two-dimensional

lattices have the same graph structure and are embedded in

the upper hyperplane, as in Fig. 3. It has been proved that they

are connected trees, i.e. there exists a unique path between any

two nodes vð�1Þ and vð�2Þ (cf. ch. 1, Conway, 1997).

3.2. Topographs for three-dimensional lattices

For any fixed three-dimensional lattice L, the topograph has

the following V3 as the set of all nodes:

V3 :¼

0;�l1;�l2;�l3;

�ðl1 þ l2 þ l3Þ;

�ðl1 þ l2Þ;�ðl1 þ l3Þ;

�ðl2 þ l3Þ

8>>><
>>>:

9>>>=
>>>;

: hl1; l2; l3i is a basis of L

8>>><
>>>:

9>>>=
>>>;
:

ð11Þ

Every � 2 V3 consists of 15 elements, including 0. Two nodes

vð�1Þ; vð�2Þ are connected by an edge if and only if the

number of elements in j�1 \�2j equals 13. In this case, the

following holds.

Lemma 1. For any fixed basis hl1; l2; l3i of L, we

define l4 :¼ �l1 � l2 � l3 and �1 :¼ f0;�l1;�l2;�l3;�l4;
�ðl1 þ l2Þ;�ðl1 þ l3Þ;�ðl2 þ l3Þg. If �1;�2 2 V3 satisfy

j�1 \�2j ¼ 13, �1 ¼ ð�1 \�2Þ [ f�ðli þ ljÞg and �2 ¼

ð�1 \�2Þ [ f�ðli � ljÞg hold for some 1 � i< j � 4.

A proof of Lemma 1 is provided in Appendix B. As a

result of Lemma 1, if k1; k2 2 L are chosen so that

�1 ¼ ð�1 \�2Þ [ f�k1g and �2 ¼ ð�1 \�2Þ [ f�k2g,

fðk1 þ k2Þ=2; ðk1 � k2Þ=2g is a primitive set of L, and both

ðk1 � k2Þ=2 are contained in �1 \�2. Hence the edge

Acta Cryst. (2013). A69, 603–610 R. Oishi-Tomiyasu 
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Figure 2
Local structure of a topograph defined for a two-dimensional lattice. [For
a fixed basis hl1; l2i of L, define �0 :¼ f0;�l1;�l2;�ðl1 þ l2Þg. Then, the
node vð�0Þ is an endpoint of the three edges above.]

Figure 3
Embedding of a topograph in the upper half plane.

Figure 1
Edges of a topograph for a two-dimensional lattice. [Here, we assume the
left and right nodes correspond to �1 :¼ f0;�ðk1 � k2Þ=2;�k1g and
�2 :¼ f0;�ðk1 � k2Þ=2;�k2g, respectively. The direction of every edge
of a topograph is determined using the lengths of k1 and k2.]



connecting vð�1Þ and vð�2Þ may be considered to be asso-

ciated with the Ito equation in equation (7), similarly with the

two-dimensional case.

In the three-dimensional case, every edge is tentatively

represented as in Fig. 4. By Lemma 1, every topograph node is

an endpoint of six edges as in Fig. 5.

Topographs for three-dimensional lattices are connected,

i.e. paths exist between any two nodes although they are not a

tree (see Corollary C.1 in Appendix C). The simple circuits of

length less than 7 in the topographs are listed in Fig. 6. (A path

containing no repeated vertices or edges other than the

starting and ending vertices is called a simple circuit.)

In x5, information about the lengths associated with the

circuits of length 6 are used to generate candidate powder

auto-indexing solutions.

4. Distribution rules for wallpaper groups

This section aims to introduce distribution rules for wallpaper

groups and provide some information about the framework of

the new algorithm. When �ext is the set of reciprocal-lattice

vectors corresponding to extinct reflections due to the

systematic absence, Theorem 1 claims that elements of �ext

only appear in the grey area in Fig. 7, regardless of the type of

systematic absence.

Theorem 1. We fix a type of systematic absence belonging to

a wallpaper group G, and let L be the set of all translations in

G and L� be the reciprocal lattice of L. If l� is a primitive

vector of L� belonging to �ext, L� has a basis hl�1 ; l�2i satisfying

l�1 � l
�
2 ¼ 0. Furthermore, l� equals �l�1 or �l�2 .

Theorem 1 is easily verified by checking the systematic

absences of wallpaper groups in International Tables for

Crystallography. When Theorem 1 is considered from the

point of view of powder auto-indexing, the following results

are obtained:

(P1) Ito’s method works appropriately, for any types of

systematic absence of wallpaper groups, because L� has infi-

nitely many basis vectors hl�1 ; l�2i such that none of l�1, l�2 , l�1 � l�2
belongs to �ext.

(P2) Furthermore, the topograph contains connected

subgraphs consisting of infinitely many edges associated with

l�1 , l�2 , l�1 � l�2 =2 �ext.

The former property (P1) indicates that the array Ans

output by the algorithm in Table 1 contains the 2� 2 metric

research papers

606 R. Oishi-Tomiyasu 
 Distribution rules of systematic absences Acta Cryst. (2013). A69, 603–610

Figure 4
Edges of a topograph for a three-dimensional lattice. [Here, we assume
�1 ¼ ð�1 \�2Þ [ f�k1g and �2 ¼ ð�1 \�2Þ [ f�k2g. Differently from
Fig. 1, jk1j

2, jk2j
2 are omitted.]

Figure 5
Local structure of a topograph defined for a three-dimensional lattice. For
any fixed basis hl1; l2; l3i of L, choose l4 and �1 as in Lemma 1. The node
vð�1Þ is an endpoint of the six edges associated with the set of vectors li, lj,
li � lj (1 � i< j � 4).

Figure 6
Circuits contained in the topograph for a three-dimensional lattice L. [For
any fixed basis hl1; l2; l3i of L, we define �0 :¼ f0;�l1;�l2;�l3;
�ðl1 þ l2Þ;�ðl1 þ l3Þ;�ðl2 þ l3Þ;�ðl1 þ l2 þ l3Þg. In Appendix C, it is
proved that these circuits generate the fundamental group of the
topograph.]

Figure 7
Reciprocal-lattice vectors allowed to correspond to systematic absences.
[Any topographs include (if any) a unique edge with the direction 0. This
is proved in ch. 1 of Conway (1997) as the case of a double well.]



tensor of the true solution, when the q-values of diffraction

peaks are extracted appropriately.

The latter property (P2) allows us to define a new sorting

criterion for two-dimensional lattices using topographs. This

enables us to judge which 2� 2 metric tensors output from

Table 1 are more plausible solutions. In order to explain this,

we shall start from the upper subgraph in Fig. 8, making the

same assumption as used in Ito’s method.

Assumption. For q-values q1; q2; q3; q4 extracted from

diffraction patterns satisfying 2ðq1 þ q2Þ ¼ q3 þ q4, there exist

lattice vectors l�1, l�2 of L� such that q1 ¼ jl
�
1 j

2, q2 ¼ jl
�
2 j

2,

q3 ¼ jl
�
1 þ l�2 j

2, q4 ¼ jl
�
1 � l�2 j

2 holds.

If the above assumption is true, and if missing reflections

owing to systematic absences or other reasons can be

neglected, all j2l�1 � l�2 j
2 and jl�1 � 2l�2 j

2 in the following equa-

tions will also be observed as q-values of diffraction peaks:

2ðjl�1 j
2
þ jl�1 þ l�2 j

2
Þ ¼ jl�2 j

2
þ j2l�1 þ l�2 j

2; ð12Þ

2ðjl�2 j
2
þ jl�1 þ l�2 j

2
Þ ¼ jl�1 j

2
þ jl�1 þ 2l�2 j

2; ð13Þ

2ðjl�1 j
2
þ jl�1 � l�2 j

2
Þ ¼ jl�2 j

2
þ j2l�1 � l�2 j

2; ð14Þ

2ðjl�2 j
2
þ jl�1 � l�2 j

2
Þ ¼ jl�1 j

2
þ jl�1 � 2l�2 j

2: ð15Þ

On the other hand, if there are no l�1, l�2 satisfying the

assumption [because either q1, q2, q3 or q4 corresponds to a

false peak caused by impurities in a material, or 2ðq1 þ q2Þ ¼

q3 þ q4 holds accidentally], it is very rare that one of

j2l�1 � l�2 j
2, jl�1 � 2l�2 j

2 will ‘accidentally’ be observed again.

Therefore, we shall extend the graph in Fig. 8 by unifying

each edge, as long as all the four lattice vector lengths in its

corresponding Ito equation are observed as q-values of

diffraction peaks. The resulting graph would then become

much larger if the above assumption is true than in the case

that it is false.

The property (P2) claims that the influence of systematic

absences on the size of the resulting graph is limited. The

influence of missing diffraction peaks due to reasons other

than systematic absences is also limited, because the prob-

ability that all j2l�1 � l�2 j
2 and jl�1 � 2l�2 j

2 are missing simulta-

neously is small.

The above discussion supports the use of the size of the

resulting graph as a sorting criterion for 2� 2 metric tensors

output from the algorithm in Table 1. The value of the

criterion is computed by the following procedures:

(i) Enumerate combinations of four q-values q1; q2; q3; q4

of diffraction peaks satisfying 2ðq1 þ q2Þ ¼ q3 þ q4 by the

algorithm in Table 1. For every such q1; q2; q3; q4, insert the

corresponding subgraph as in Fig. 1 in an array A2. (Any

subgraphs of a topograph with finite nodes and edges are

implemented without difficulty by using a binary tree data

structure.)

(ii) Unify subgraphs in A2 by finding those with a common

node, as in Fig. 9. For every resulting subgraph, let F be the

number of diffraction peaks whose q-values are used to form

the subgraph. For every entry of A2 contained in the subgraph,

define its figure of merit as F.

(iii) Remove elements with smaller figures of merit from A2.

By procedures (i)–(iii), it is possible to reduce the number

of candidate two-dimensional lattices, retaining the more

plausible ones. In the program implemented by the author, the

procedures (i)–(iii) finish in a moment when the number of

used reflections is below 100.

Note that the above figure of merit F ignores diffraction

peaks not corresponding to computed q-values. Therefore, it

will be effective in finding lattices whose vectors do not

correspond to all the diffraction peaks. This includes the case

Acta Cryst. (2013). A69, 603–610 R. Oishi-Tomiyasu 
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Figure 8
A subgraph corresponding to the formula 2ðjl�1 j

2
þ jl�2 j

2
Þ ¼ jl�1 þ l�2 j

2
þ

jl�1 � l�2 j
2 and its extension using equations (12)–(15).

Table 1
Algorithm to search for four q-values satisfying Ito’s equation.

y The unit-cell parameters are retrieved from the metric tensor of L� by carrying out
Bravais-lattice determination.



of zone detection, i.e. the search for two-dimensional sublat-

tices of three-dimensional crystal lattices. In x5, the new figure

of merit is applied for the purpose.

5. Main results on distribution rules of systematic
absences

In this section, the primitive lattice of a crystal is always

represented as L and distinguished from the Bravais lattice.

We present a method to determine the 3� 3 metric tensor of

the reciprocal lattice L� using the q-values of diffraction

peaks. The method is based on the theorems introduced in this

section and therefore works for any types of systematic

absence. All the proof of the theorems are found in Appendix

D.

From a powder diffraction pattern, a finite subset of the

following set is extracted:

�cal :¼ jl�j2 : 0 6¼ l� 2 L� does not belong to �ext

� �
: ð16Þ

In the following, this observed finite set is denoted by �obs.

The following theorem is applicable to zone detection:

Theorem 2. Regardless of the type of systematic absence,

there are infinitely many primitive sets fl�1 ; l�2g of L� such that

none of l�1, l�2 , l�1 þ 2l�2 , 2l�1 þ l�2 are contained in �ext.

As a consequence of Theorem 2, even if �obs has missing or

false q-values, �obs normally contains jl�1 j
2, jl�2 j

2, jl�1 þ 2l�2 j
2 and

j2l�1 þ l�2 j
2 for multiple primitive sets fl�1 ; l�2g of L�. The lattice

vector lengths satisfy the following formula:

3jl�1 j
2
þ jl�1 þ 2l�2 j

2
¼ 3jl�2 j

2
þ j2l�1 þ l�2 j

2: ð17Þ

For the lengths jl�1 j
2, jl�2 j

2, jl�1 � l�2 j
2 satisfying Ito’s equation, a

completely different situation occurs for some types of

systematic absence as explained in Appendix A.

Equation (17) corresponds to the left-hand graph in Fig. 10,

which is a subgraph of the topograph defined for the two-

dimensional lattice expanded by l�1, l�2 .

The subgraph is composed of two edges corresponding to

Ito’s equation as seen in Fig. 10. In parallel with this, equation

(17) is decomposed into two Ito equations by inserting the new

lattice vector l�1 þ l�2 :

2ðjl�1 þ l�2 j
2
þ jl�1 j

2
Þ ¼ jl�2 j

2
þ j2l�1 þ l�2 j

2; ð18Þ

2ðjl�1 þ l�2 j
2
þ jl�2 j

2
Þ ¼ jl�1 j

2
þ jl�1 þ 2l�2 j

2: ð19Þ

If jl�1 þ l�2 j
2 does not correspond to any q-values in �obs, we

may assume that it was not observed because of systematic

absence and so on. Note that, nevertheless, jl�1 þ l�2 j
2 is

computed by jl�1 þ l�2 j
2 = ðjl�2 j

2
þ j2l�1 þ l�2 j

2
Þ=2� jl�1 j

2 =

ðjl�1 j
2
þ jl�1 þ 2l�2 j

2
Þ=2� jl�2 j

2 from the other vector lengths. As

a result, 2� 2 metric tensors of the same zone are computed

from equations (18) and (19), because they correspond to

edges contained in the same topograph.

There are still non-trivial problems:

(Q1) It is possible that the equation 3q1 þ q3 ¼ 3q2 þ q4

only holds accidentally owing to, e.g., false peaks caused

by impurities, and L� might not include lattice vectors

l�1 , l�2 satisfying q1 ¼ jl
�
1 j

2, q2 ¼ jl
�
2 j

2, q3 ¼ jl
�
1 þ 2l�2 j

2,

q4 ¼ j2l�1 þ l�2 j
2. How can we remove such mistakenly enum-

erated combinations?

(Q2) How can we construct a three-dimensional solution

from the obtained zones without the adverse effects of

systematic absences?

These problems have not been answered in previous studies

of Ito’s method. We shall provide methods to resolve these

problems.

We may expect (Q1) to be resolved by the same procedures

(i)–(iii) in x4. It is only necessary to verify that the influence of

systematic absences is also limited in the case of space groups.

This is ascertained by the following theorem:

Theorem 3. Regardless of the type of systematic absence,

there are infinitely many primitive sets fl�1 ; l�2g of L� such that

ml�1 þ ðm� 1Þl�2 does not belong to �ext for any integer m.

Furthermore, there exist infinitely many two-dimensional

sublattices L�2 of L� such that L�2 is expanded by a primitive set

fl�1 ; l�2g of L� satisfying this property.

The lattice vectors ml�1 þ ðm� 1Þl�2 (m 2 Z) satisfy equation

(17) as follows:

3jml�1 þ ðm� 1Þl�2 j
2
þ jðmþ 2Þl�1 þ ðmþ 1Þl�2 j

2

¼ 3jðmþ 1Þl�1 þml�2 j
2
þ jðm� 1Þl�1 þ ðm� 2Þl�2 j

2: ð20Þ

Hence Theorem 2 is obtained as a corollary of Theorem 3. By

connecting the subgraphs corresponding to equation (20) for

each m, a chain of infinite length as in Fig. 11 is obtained.

Theorem 3 indicates that a large subgraph is formed by

unifying the subgraphs associated with q-values of �obs.

(However, the size of the formed graph is rather limited

because the number of q-values in �obs should not exceed 100
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Figure 10
A subgraph of a topograph corresponding to the equation 3jl�1 j

2
þ

jl�1 þ 2l�2 j
2
¼ 3jl�2 j

2
þ j2l�1 þ l�2 j

2.Figure 9
Extension of a subgraph of a topograph. [All three graphs on the left-
hand side have a common node associated with f0;�l�1 ;�l�2 ;�ðl

�
1 þ l�2 Þg.

This figure illustrates how these graphs are unified.]



if observation errors included in large q-values are considered

properly.)

(Q2) is resolved by the following theorem:

Theorem 4. Regardless of the type of systematic absence,

there are infinitely many bases hl�1 ; l�2 ; l�3i of L� such that the

following hold:

(a) �l�1 þ l�2 þ l�3 do not belong to �ext.

(b) For both i ¼ 2; 3, ml�1 þ ðm� 1Þð�l�1 þ l�i Þ do not belong

to �ext for any integer m, or ml�i þ ðm� 1Þðl�1 � l�i Þ do not

belong to �ext for any integer m � 0.

That is, none of the underlined lattice vectors in Fig. 12

belong to �ext.

Consequently, candidate solutions for the 3� 3 metric

tensor of L� are enumerated by the following procedure,

which is almost identical to the algorithm adopted in the

powder auto-indexing program Conograph. (In the following

procedure, the assertion that �l�1 þ l�2 þ l�3 =2 �ext is not used,

for simplicity.)

(i) Enumerate combinations of four q-values q1; q2; q3; q4 in

�obs satisfying 3q1 þ q3 ¼ 3q2 þ q4. From each combination,

obtain two sets of q-values satisfying Ito’s equation by the

method described above. Insert every set in an array A2.

(ii) Compute the figure of merit for all entries of A2 using

the method described in x4. Remove entries with smaller

figures of merit from A2.

(iii) For any q-value q0 in �obs and two entries of

A2 corresponding to Ito’s equation 2 ðjl�1 j
2
þ jl�i j

2
Þ ¼

jl�1 þ l�i j
2
þ jl�1 þ l�i j

2 (i ¼ 2; 3) as in Fig. 13, assume that

q0 ¼ jl
�
1 þ l�2 þ l�3 j

2 holds. The 3� 3 metric tensor ðl�i � l
�
j Þ1�i;j�3

is computed as follows:

jl�1 j
2 jl�

1
þl�

2
j2�jl�

1
j2�jl�

2
j2

2

jl�
1
þl�

3
j2�jl�

1
j2�jl�

3
j2

2
jl�

1
þl�

2
j2�jl�

1
j2�jl�

2
j2

2 jl�2 j
2 jl�

1
j2�jl�

1
þl�

2
j2�jl�

1
þl�

3
j2þq0

2
jl�

1
þl�

3
j2�jl�

1
j2�jl�

3
j2

2

jl�
1
j2�jl�

1
þl�

2
j2�jl�

1
þl�

3
j2þq0

2 jl�3 j
2

0
B@

1
CA:
ð21Þ

Insert the metric tensor in an array A3, if it is positive definite.

The use of the figure of merit in (ii) is justified by property

(b) of Theorem 4. The lengths used in (iii) including

j�l�1 þ l�2 þ l�3 j
2 may be considered to be associated with every

circuit of length 6 as in Fig. 6.

In this paper, we did not define a sorting criterion for 3� 3

metric tensors. For two-dimensional lattices, we have

explained that a large graph associated with observed q-values

is formed by connecting subgraphs corresponding to Ito’s

equation. For three-dimensional lattices, a rather large

subgraph seems to be formed by connecting circuits of length

6, although we have not investigated this sufficiently. Such a

criterion is expected to be effective for powder diffraction

patterns including false peaks due to impurities.

6. Conclusion

We have introduced unknown general properties of systematic

absences. They are given as distribution rules of extinct Miller

indices on a topograph. A new powder auto-indexing algo-

rithm, which works for any Bravais lattices, space groups and

systematic absences, was proposed based on these rules. The

algorithm was implemented in the powder auto-indexing

software Conograph. Detailed information about other

advantages, parameter settings and results of Conograph will

be provided in our subsequent paper.
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Figure 13
Two edges associated commonly with l�1 . [When two Ito equations
2ðq1 þ q2Þ ¼ q3 þ q4 and 2ðr1 þ r2Þ ¼ r3 þ r4 are provided, we judge
whether q1 ¼ r1 holds by the following procedure: first, if q1 and r1 refer
to the same q-values in �obs, it may be supposed that q1 ¼ r1. If q1, r1 are
not in �obs, they are q-values obtained by decomposing equation (17) into
two Ito equations and computed by q1 :¼ ðq3 þ q4Þ=2� q2 and
r1 :¼ ðr3 þ r4Þ=2� r2. Thus q1 and r1 may be considered to be equal as
long as ðq3 þ q4Þ=2� q2 and ðr3 þ r4Þ=2� r2 coincide under considera-
tion of their observation errors.]

Figure 11
A connected chain contained in a topograph.

Figure 12
A set of q-values that can be used for enumeration of three-dimensional
lattices. (In the process of determining the 3� 3 metric tensors of the
lattice, it may be assumed that the lengths of all the underlined lattice
vectors are included in �obs.)



7. Related literature

Appendix A also mentions the equations suggested by de

Wolff (1957), in addition to Ito’s equation. A theorem in

Milnor (1971) was used to obtain the statements about the

structure of topographs for three-dimensional lattices (see

Appendix C). The space-group library of the Z-Rietveld code

(Oishi-Tomiyasu et al., 2012) was used to find and prove the

distribution rules given here.
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